Answer :
To solve the equation [tex]\(-26 = -45 + h\)[/tex], we need to find the value of [tex]\(h\)[/tex]. Here are the steps to isolate [tex]\(h\)[/tex]:
1. Start with the given equation:
[tex]\[
-26 = -45 + h
\][/tex]
2. To isolate [tex]\(h\)[/tex], we need to get rid of [tex]\(-45\)[/tex] on the right side. To do that, we add [tex]\(45\)[/tex] to both sides of the equation:
[tex]\[
-26 + 45 = -45 + 45 + h
\][/tex]
3. Simplify both sides. On the left side, calculate [tex]\(-26 + 45\)[/tex]:
[tex]\[
-26 + 45 = 19
\][/tex]
4. On the right side, [tex]\(-45 + 45\)[/tex] cancels out, leaving us with:
[tex]\[
h
\][/tex]
5. Now, the equation looks like:
[tex]\[
19 = h
\][/tex]
So, the value of [tex]\(h\)[/tex] is [tex]\(19\)[/tex].
1. Start with the given equation:
[tex]\[
-26 = -45 + h
\][/tex]
2. To isolate [tex]\(h\)[/tex], we need to get rid of [tex]\(-45\)[/tex] on the right side. To do that, we add [tex]\(45\)[/tex] to both sides of the equation:
[tex]\[
-26 + 45 = -45 + 45 + h
\][/tex]
3. Simplify both sides. On the left side, calculate [tex]\(-26 + 45\)[/tex]:
[tex]\[
-26 + 45 = 19
\][/tex]
4. On the right side, [tex]\(-45 + 45\)[/tex] cancels out, leaving us with:
[tex]\[
h
\][/tex]
5. Now, the equation looks like:
[tex]\[
19 = h
\][/tex]
So, the value of [tex]\(h\)[/tex] is [tex]\(19\)[/tex].