Answer :
We start with the equation
[tex]$$
4.74 - 30c = -43 - 82c - 4.26.
$$[/tex]
Step 1. Combine like terms on the right side
Notice that on the right side there are two constant terms, [tex]\(-43\)[/tex] and [tex]\(-4.26\)[/tex]. Adding these together gives:
[tex]$$
-43 - 4.26 = -47.26.
$$[/tex]
So the equation becomes:
[tex]$$
4.74 - 30c = -47.26 - 82c.
$$[/tex]
Step 2. Get all the [tex]$c$[/tex] terms on one side
To move the [tex]\(-82c\)[/tex] from the right side to the left side, add [tex]\(82c\)[/tex] to both sides of the equation:
[tex]$$
4.74 - 30c + 82c = -47.26.
$$[/tex]
Combine the [tex]\(c\)[/tex] terms on the left:
[tex]$$
4.74 + 52c = -47.26.
$$[/tex]
Step 3. Isolate the term containing [tex]$c$[/tex]
Subtract [tex]\(4.74\)[/tex] from both sides to gather the constant terms:
[tex]$$
52c = -47.26 - 4.74.
$$[/tex]
Calculate the sum on the right:
[tex]$$
-47.26 - 4.74 = -52.
$$[/tex]
Now the equation is:
[tex]$$
52c = -52.
$$[/tex]
Step 4. Solve for [tex]$c$[/tex]
Divide both sides by 52:
[tex]$$
c = \frac{-52}{52} = -1.
$$[/tex]
Thus, the solution is:
[tex]$$
c = -1.
$$[/tex]
[tex]$$
4.74 - 30c = -43 - 82c - 4.26.
$$[/tex]
Step 1. Combine like terms on the right side
Notice that on the right side there are two constant terms, [tex]\(-43\)[/tex] and [tex]\(-4.26\)[/tex]. Adding these together gives:
[tex]$$
-43 - 4.26 = -47.26.
$$[/tex]
So the equation becomes:
[tex]$$
4.74 - 30c = -47.26 - 82c.
$$[/tex]
Step 2. Get all the [tex]$c$[/tex] terms on one side
To move the [tex]\(-82c\)[/tex] from the right side to the left side, add [tex]\(82c\)[/tex] to both sides of the equation:
[tex]$$
4.74 - 30c + 82c = -47.26.
$$[/tex]
Combine the [tex]\(c\)[/tex] terms on the left:
[tex]$$
4.74 + 52c = -47.26.
$$[/tex]
Step 3. Isolate the term containing [tex]$c$[/tex]
Subtract [tex]\(4.74\)[/tex] from both sides to gather the constant terms:
[tex]$$
52c = -47.26 - 4.74.
$$[/tex]
Calculate the sum on the right:
[tex]$$
-47.26 - 4.74 = -52.
$$[/tex]
Now the equation is:
[tex]$$
52c = -52.
$$[/tex]
Step 4. Solve for [tex]$c$[/tex]
Divide both sides by 52:
[tex]$$
c = \frac{-52}{52} = -1.
$$[/tex]
Thus, the solution is:
[tex]$$
c = -1.
$$[/tex]