Answer :
Sure! Let's solve the equation step-by-step to find the value of [tex]\( b \)[/tex].
The equation given is:
[tex]\[
\frac{b}{3} - 2 = 1.57
\][/tex]
Step 1: Add 2 to both sides of the equation to isolate [tex]\(\frac{b}{3}\)[/tex].
[tex]\[
\frac{b}{3} - 2 + 2 = 1.57 + 2
\][/tex]
Simplifying this gives:
[tex]\[
\frac{b}{3} = 3.57
\][/tex]
Step 2: Multiply both sides by 3 to solve for [tex]\( b \)[/tex].
[tex]\[
b = 3.57 \times 3
\][/tex]
When you multiply, you get:
[tex]\[
b = 10.71
\][/tex]
Therefore, the solution is:
[tex]\[
b = 10.71
\][/tex]
The equation given is:
[tex]\[
\frac{b}{3} - 2 = 1.57
\][/tex]
Step 1: Add 2 to both sides of the equation to isolate [tex]\(\frac{b}{3}\)[/tex].
[tex]\[
\frac{b}{3} - 2 + 2 = 1.57 + 2
\][/tex]
Simplifying this gives:
[tex]\[
\frac{b}{3} = 3.57
\][/tex]
Step 2: Multiply both sides by 3 to solve for [tex]\( b \)[/tex].
[tex]\[
b = 3.57 \times 3
\][/tex]
When you multiply, you get:
[tex]\[
b = 10.71
\][/tex]
Therefore, the solution is:
[tex]\[
b = 10.71
\][/tex]