Answer :
Simplifying fractions involves reducing them to their simplest form, where the numerator (top value) and the denominator (bottom value) have no common factors other than 1. This often makes the fractions easier to work with.
Here's how you simplify each of the fractions in the list:
[tex]\frac{8}{12}[/tex] simplifies to [tex]\frac{2}{3}[/tex]. Both 8 and 12 can be divided by their greatest common divisor (GCD), which is 4.
- [tex]\frac{8 \div 4}{12 \div 4} = \frac{2}{3}[/tex]
[tex]\frac{4}{20}[/tex] simplifies to [tex]\frac{1}{5}[/tex]. The GCD is 4.
- [tex]\frac{4 \div 4}{20 \div 4} = \frac{1}{5}[/tex]
[tex]\frac{16}{24}[/tex] simplifies to [tex]\frac{2}{3}[/tex]. The GCD is 8.
- [tex]\frac{16 \div 8}{24 \div 8} = \frac{2}{3}[/tex]
[tex]\frac{12}{16}[/tex] simplifies to [tex]\frac{3}{4}[/tex]. The GCD is 4.
- [tex]\frac{12 \div 4}{16 \div 4} = \frac{3}{4}[/tex]
[tex]\frac{9}{12}[/tex] simplifies to [tex]\frac{3}{4}[/tex]. The GCD is 3.
- [tex]\frac{9 \div 3}{12 \div 3} = \frac{3}{4}[/tex]
[tex]\frac{15}{25}[/tex] simplifies to [tex]\frac{3}{5}[/tex]. The GCD is 5.
- [tex]\frac{15 \div 5}{25 \div 5} = \frac{3}{5}[/tex]
[tex]\frac{10}{100}[/tex] simplifies to [tex]\frac{1}{10}[/tex]. The GCD is 10.
- [tex]\frac{10 \div 10}{100 \div 10} = \frac{1}{10}[/tex]
[tex]\frac{4}{6}[/tex] simplifies to [tex]\frac{2}{3}[/tex]. The GCD is 2.
- [tex]\frac{4 \div 2}{6 \div 2} = \frac{2}{3}[/tex]
[tex]\frac{16}{20}[/tex] simplifies to [tex]\frac{4}{5}[/tex]. The GCD is 4.
- [tex]\frac{16 \div 4}{20 \div 4} = \frac{4}{5}[/tex]
[tex]\frac{20}{50}[/tex] simplifies to [tex]\frac{2}{5}[/tex]. The GCD is 10.
- [tex]\frac{20 \div 10}{50 \div 10} = \frac{2}{5}[/tex]
[tex]\frac{25}{50}[/tex] simplifies to [tex]\frac{1}{2}[/tex]. The GCD is 25.
- [tex]\frac{25 \div 25}{50 \div 25} = \frac{1}{2}[/tex]
[tex]\frac{70}{100}[/tex] simplifies to [tex]\frac{7}{10}[/tex]. The GCD is 10.
- [tex]\frac{70 \div 10}{100 \div 10} = \frac{7}{10}[/tex]
[tex]\frac{14}{20}[/tex] simplifies to [tex]\frac{7}{10}[/tex]. The GCD is 2.
- [tex]\frac{14 \div 2}{20 \div 2} = \frac{7}{10}[/tex]
[tex]\frac{3}{9}[/tex] simplifies to [tex]\frac{1}{3}[/tex]. The GCD is 3.
- [tex]\frac{3 \div 3}{9 \div 3} = \frac{1}{3}[/tex]
\n15. [tex]\frac{15}{20}[/tex] simplifies to [tex]\frac{3}{4}[/tex]. The GCD is 5. - [tex]\frac{15 \div 5}{20 \div 5} = \frac{3}{4}[/tex]
- [tex]\frac{3 \div 3}{9 \div 3} = \frac{1}{3}[/tex]
[tex]\frac{12}{15}[/tex] simplifies to [tex]\frac{4}{5}[/tex]. The GCD is 3.
- [tex]\frac{12 \div 3}{15 \div 3} = \frac{4}{5}[/tex]
These steps involve finding the greatest number that both the numerator and the denominator can be divided by, which is the greatest common divisor (GCD). By dividing both parts of the fraction by this number, we simplify it to its lowest terms. This process helps make calculations with fractions easier and clearer.