Answer :
Sure! Let's simplify the expression step by step:
The given expression is [tex]\(9x(5x^2)\)[/tex].
1. Understand the Components:
- The expression is a product of two parts: [tex]\(9x\)[/tex] and [tex]\(5x^2\)[/tex].
2. Multiply the Coefficients:
- Multiply the coefficients (numbers) together: [tex]\(9 \times 5 = 45\)[/tex].
3. Multiply the Variable Parts:
- Multiply the variable [tex]\(x\)[/tex] by [tex]\(x^2\)[/tex].
- When multiplying like bases, you add the exponents: [tex]\(x^1 \times x^2 = x^{1+2} = x^3\)[/tex].
4. Combine the Results:
- Combine the coefficient and the variable expression: [tex]\(45 \times x^3 = 45x^3\)[/tex].
Therefore, the simplified expression is [tex]\(45x^3\)[/tex].
So, the correct answer is:
D. [tex]\(45x^3\)[/tex]
The given expression is [tex]\(9x(5x^2)\)[/tex].
1. Understand the Components:
- The expression is a product of two parts: [tex]\(9x\)[/tex] and [tex]\(5x^2\)[/tex].
2. Multiply the Coefficients:
- Multiply the coefficients (numbers) together: [tex]\(9 \times 5 = 45\)[/tex].
3. Multiply the Variable Parts:
- Multiply the variable [tex]\(x\)[/tex] by [tex]\(x^2\)[/tex].
- When multiplying like bases, you add the exponents: [tex]\(x^1 \times x^2 = x^{1+2} = x^3\)[/tex].
4. Combine the Results:
- Combine the coefficient and the variable expression: [tex]\(45 \times x^3 = 45x^3\)[/tex].
Therefore, the simplified expression is [tex]\(45x^3\)[/tex].
So, the correct answer is:
D. [tex]\(45x^3\)[/tex]