College

Simplify the expression:

[tex]
\[
\left(-7x^2 - 3x^4 - 5\right) + \left(-3x^4 + 3 + 9x^2\right)
\]
[/tex]

Choose the correct answer:

A. [tex]\(-6x^4 + 2x^2 - 2\)[/tex]
B. [tex]\(-10x^4 + 4\)[/tex]

Answer :

To solve the given problem, we need to combine and simplify two polynomial expressions:

1. Given Expressions:
- The first expression is: [tex]\(-7x^2 - 3x^4 - 5\)[/tex]
- The second expression is: [tex]\(-3x^4 + 9x^2 + 3\)[/tex]

2. Combine the Expressions:
- Start by combining the like terms from both expressions.

3. Simplify Step-by-step:
- Combine the [tex]\(x^4\)[/tex] terms:
- From the first expression, the [tex]\(x^4\)[/tex] term is [tex]\(-3x^4\)[/tex].
- From the second expression, the [tex]\(x^4\)[/tex] term is [tex]\(-3x^4\)[/tex].
- Combine: [tex]\(-3x^4 + (-3x^4) = -6x^4\)[/tex].

- Combine the [tex]\(x^2\)[/tex] terms:
- From the first expression, the [tex]\(x^2\)[/tex] term is [tex]\(-7x^2\)[/tex].
- From the second expression, the [tex]\(x^2\)[/tex] term is [tex]\(9x^2\)[/tex].
- Combine: [tex]\(-7x^2 + 9x^2 = 2x^2\)[/tex].

- Combine the constant terms:
- The constant term from the first expression is [tex]\(-5\)[/tex].
- The constant term from the second expression is [tex]\(3\)[/tex].
- Combine: [tex]\(-5 + 3 = -2\)[/tex].

4. Final Simplified Expression:
- Bringing it all together, we have:
[tex]\[
-6x^4 + 2x^2 - 2
\][/tex]

This step-by-step combination and simplification result in the expression [tex]\(-6x^4 + 2x^2 - 2\)[/tex], which matches option [A] from the given choices.