High School

Simplify the expression:

[tex] -8x^5 \cdot -4x^4 [/tex]

A) [tex] -24x^{14} [/tex]
B) [tex] -9x^9 [/tex]
C) [tex] 32x^9 [/tex]
D) [tex] 72x^9 [/tex]

Answer :

To solve the problem [tex]\(-8x^5 \cdot -4x^4\)[/tex], we need to follow these steps:

1. Multiply the coefficients:
- The coefficients of the terms are [tex]\(-8\)[/tex] and [tex]\(-4\)[/tex].
- When you multiply these coefficients: [tex]\(-8 \times -4 = 32\)[/tex].

2. Add the exponents of the like bases:
- The base [tex]\(x\)[/tex] is the same in both terms.
- For the exponents: [tex]\(5\)[/tex] (from [tex]\(x^5\)[/tex]) and [tex]\(4\)[/tex] (from [tex]\(x^4\)[/tex]), you add them: [tex]\(5 + 4 = 9\)[/tex].

3. Combine the results:
- The simplified form is [tex]\(32 \times x^9\)[/tex], or simply [tex]\(32x^9\)[/tex].

So, the answer is [tex]\(32x^9\)[/tex], which matches option [tex]\(C\)[/tex].