Answer :
To simplify the expression
[tex]$$-4x^2(3x - 7),$$[/tex]
we start by applying the distributive property, which means multiplying the term outside the parentheses by each term inside the parentheses.
1. Multiply [tex]$$-4x^2$$[/tex] by [tex]$$3x$$[/tex]:
[tex]$$
-4x^2 \cdot 3x = -12x^3.
$$[/tex]
2. Multiply [tex]$$-4x^2$$[/tex] by [tex]$$-7$$[/tex]:
[tex]$$
-4x^2 \cdot (-7) = 28x^2.
$$[/tex]
3. Combine the results:
[tex]$$
-12x^3 + 28x^2.
$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
Comparing with the given options, the correct choice is option D.
[tex]$$-4x^2(3x - 7),$$[/tex]
we start by applying the distributive property, which means multiplying the term outside the parentheses by each term inside the parentheses.
1. Multiply [tex]$$-4x^2$$[/tex] by [tex]$$3x$$[/tex]:
[tex]$$
-4x^2 \cdot 3x = -12x^3.
$$[/tex]
2. Multiply [tex]$$-4x^2$$[/tex] by [tex]$$-7$$[/tex]:
[tex]$$
-4x^2 \cdot (-7) = 28x^2.
$$[/tex]
3. Combine the results:
[tex]$$
-12x^3 + 28x^2.
$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
Comparing with the given options, the correct choice is option D.