High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the simplified product:

[tex]\sqrt[3]{9} x^4 \times \sqrt[3]{3} x^8[/tex]

A. [tex]\sqrt[3]{12} x^{12}[/tex]
B. [tex]\sqrt[3]{27} x^{12}[/tex]
C. [tex]3x^4[/tex]
D. [tex]9x^6[/tex]

Answer :

the simplification of the product surd [tex]\sqrt[3]{12x^{4} }[/tex]×[tex]\sqrt[3]{3x^{8} }[/tex] is 3x⁴

What is a surd?

Surds are the values in square root that cannot be further simplified into whole numbers or integers.

To simplify the product below, we need to use the law of surd.

Recall from the law of surd,

  • √a×√b = √ab

Given the product surd,

  • [tex]\sqrt[3]{12x^{4} }[/tex]×[tex]\sqrt[3]{3x^{8} }[/tex]

Applying the law of Surd we have

  • [tex]\sqrt[3]{(9*3)(x^{4}*x^{8}) }[/tex]
  • [tex]\sqrt[3]{27x^{12} }[/tex]
  • [tex]\sqrt[3]{27} * \sqrt[3]{x^{12} }[/tex]
  • 3x⁴

Hence, the simplification of [tex]\sqrt[3]{12x^{4} }[/tex]×[tex]\sqrt[3]{3x^{8} }[/tex] is 3x⁴

Learn more about surd here: https://brainly.com/question/840021

#SPJ1