High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression [tex]-4x^2(3x-7)[/tex].

A. [tex]-12x^3+28[/tex]
B. [tex]-12x^3+28x^2[/tex]
C. [tex]-12x^3-28[/tex]
D. [tex]-12x^3-28x^2[/tex]

Answer :

To simplify the expression [tex]\(-4 x^2(3 x - 7)\)[/tex], we'll need to distribute [tex]\(-4 x^2\)[/tex] to each term inside the parentheses. Let's break it down step-by-step:

1. Distribute to the first term:
Multiply [tex]\(-4 x^2\)[/tex] by [tex]\(3 x\)[/tex]:
[tex]\[
-4 x^2 \times 3 x = -12 x^3
\][/tex]

2. Distribute to the second term:
Multiply [tex]\(-4 x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4 x^2 \times (-7) = 28 x^2
\][/tex]

3. Combine the results:
Now, combine the two results from the distribution:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]

Therefore, the simplified expression is [tex]\(-12 x^3 + 28 x^2\)[/tex].

The correct answer is option B. [tex]\(-12 x^3 + 28 x^2\)[/tex].