College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression [tex]-4x^2(3x-7)[/tex].

A. [tex]-12x^3 + 28x^2[/tex]
B. [tex]-12x^3 - 28x^2[/tex]
C. [tex]-12x^3 - 28[/tex]
D. [tex]-12x^3 + 28[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x-7)\)[/tex], we'll use the distributive property. This property lets us multiply each term inside the parentheses by the term outside the parentheses.

1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:

- Multiply the coefficients: [tex]\(-4 \times 3 = -12\)[/tex].
- Multiply the variables: [tex]\(x^2 \times x = x^{2+1} = x^3\)[/tex].
- So, the result is [tex]\(-12x^3\)[/tex].

2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:

- Multiply the coefficients: [tex]\(-4 \times -7 = 28\)[/tex].
- Since there is no [tex]\(x\)[/tex] term with [tex]\(-7\)[/tex], just carry over [tex]\(x^2\)[/tex].
- So, the result is [tex]\(28x^2\)[/tex].

3. Combine the results:

- You get [tex]\(-12x^3 + 28x^2\)[/tex].

Therefore, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].

Looking at the given options, the correct one is:

A. [tex]\(-12x^3 + 28x^2\)[/tex]