Answer :
Sure, let's simplify the expression step-by-step:
We need to simplify the expression:
[tex]\[ -4x^2(3x - 7) \][/tex]
1. Distribute [tex]\( -4x^2 \)[/tex] across each term inside the parentheses:
- Multiply [tex]\( -4x^2 \)[/tex] by [tex]\( 3x \)[/tex]:
[tex]\[ -4x^2 \cdot 3x = -12x^3 \][/tex]
- Next, multiply [tex]\( -4x^2 \)[/tex] by [tex]\( -7 \)[/tex]:
[tex]\[ -4x^2 \cdot -7 = 28x^2 \][/tex]
2. Combine the terms:
- We now have:
[tex]\[ -12x^3 + 28x^2 \][/tex]
So, the simplified expression is:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Therefore, the correct choice is:
B. [tex]\( -12x^3 + 28x^2 \)[/tex]
We need to simplify the expression:
[tex]\[ -4x^2(3x - 7) \][/tex]
1. Distribute [tex]\( -4x^2 \)[/tex] across each term inside the parentheses:
- Multiply [tex]\( -4x^2 \)[/tex] by [tex]\( 3x \)[/tex]:
[tex]\[ -4x^2 \cdot 3x = -12x^3 \][/tex]
- Next, multiply [tex]\( -4x^2 \)[/tex] by [tex]\( -7 \)[/tex]:
[tex]\[ -4x^2 \cdot -7 = 28x^2 \][/tex]
2. Combine the terms:
- We now have:
[tex]\[ -12x^3 + 28x^2 \][/tex]
So, the simplified expression is:
[tex]\[ -12x^3 + 28x^2 \][/tex]
Therefore, the correct choice is:
B. [tex]\( -12x^3 + 28x^2 \)[/tex]