Answer :

To simplify the expression [tex]\(27x^2 - 5y^2 + 12y^2 - 14x^2\)[/tex], follow these steps:

1. Identify and Combine Like Terms:
- First, focus on the terms involving [tex]\(x^2\)[/tex]:
- [tex]\(27x^2\)[/tex] and [tex]\(-14x^2\)[/tex].
- Combine these by subtracting: [tex]\(27x^2 - 14x^2 = 13x^2\)[/tex].

2. Combine Like Terms for [tex]\(y^2\)[/tex]:
- Next, look at the terms involving [tex]\(y^2\)[/tex]:
- [tex]\(-5y^2\)[/tex] and [tex]\(12y^2\)[/tex].
- Combine these by adding: [tex]\(-5y^2 + 12y^2 = 7y^2\)[/tex].

3. Write the Simplified Expression:
- Finally, write down the simplified expression by combining the results from the above steps:
- The expression simplifies to [tex]\(13x^2 + 7y^2\)[/tex].

So, the simplified version of the expression is [tex]\(13x^2 + 7y^2\)[/tex].