Answer :
Sure, let's solve the given expression step-by-step.
The given expression is:
[tex]\[ 14 x^5 \left( 13 x^2 + 13 x^5 \right) \][/tex]
First, let's distribute [tex]\( 14 x^5 \)[/tex] across the terms inside the parentheses.
1. Distribute [tex]\( 14 x^5 \)[/tex] to [tex]\( 13 x^2 \)[/tex]:
[tex]\[ 14 x^5 \cdot 13 x^2 = 14 \cdot 13 \cdot x^{5 + 2} = 182 x^7 \][/tex]
2. Distribute [tex]\( 14 x^5 \)[/tex] to [tex]\( 13 x^5 \)[/tex]:
[tex]\[ 14 x^5 \cdot 13 x^5 = 14 \cdot 13 \cdot x^{5 + 5} = 182 x^{10} \][/tex]
After distributing, we add the two terms together:
[tex]\[ 182 x^7 + 182 x^{10} \][/tex]
So the correct answer is:
[tex]\[ \boxed{c. 182 x^7 + 182 x^{10}} \][/tex]
The given expression is:
[tex]\[ 14 x^5 \left( 13 x^2 + 13 x^5 \right) \][/tex]
First, let's distribute [tex]\( 14 x^5 \)[/tex] across the terms inside the parentheses.
1. Distribute [tex]\( 14 x^5 \)[/tex] to [tex]\( 13 x^2 \)[/tex]:
[tex]\[ 14 x^5 \cdot 13 x^2 = 14 \cdot 13 \cdot x^{5 + 2} = 182 x^7 \][/tex]
2. Distribute [tex]\( 14 x^5 \)[/tex] to [tex]\( 13 x^5 \)[/tex]:
[tex]\[ 14 x^5 \cdot 13 x^5 = 14 \cdot 13 \cdot x^{5 + 5} = 182 x^{10} \][/tex]
After distributing, we add the two terms together:
[tex]\[ 182 x^7 + 182 x^{10} \][/tex]
So the correct answer is:
[tex]\[ \boxed{c. 182 x^7 + 182 x^{10}} \][/tex]