Answer :
We start with the equation
[tex]$$
1 = -1.5 \times 181 - 1000.
$$[/tex]
Step 1. Multiply [tex]\(-1.5\)[/tex] by [tex]\(181\)[/tex]:
[tex]$$
-1.5 \times 181 = -271.5.
$$[/tex]
Step 2. Subtract [tex]\(1000\)[/tex]:
Subtract [tex]\(1000\)[/tex] from [tex]\(-271.5\)[/tex] to obtain the computed right-hand side of the equation:
[tex]$$
-271.5 - 1000 = -1271.5.
$$[/tex]
Step 3. Compare to the left-hand side:
The equation given is
[tex]$$
1 = -1271.5.
$$[/tex]
To see how far apart these two values are, we find the difference between the left-hand side [tex]\(1\)[/tex] and the computed right-hand side [tex]\(-1271.5\)[/tex]:
[tex]$$
1 - (-1271.5) = 1 + 1271.5 = 1272.5.
$$[/tex]
Thus, the intermediate results are as follows:
- The product [tex]\( -1.5 \times 181 \)[/tex] is [tex]\(-271.5\)[/tex].
- The computed right-hand side, after subtracting [tex]\(1000\)[/tex], is [tex]\(-1271.5\)[/tex].
- The difference between [tex]\(1\)[/tex] (the left-hand side) and the computed right-hand side is [tex]\(1272.5\)[/tex].
[tex]$$
1 = -1.5 \times 181 - 1000.
$$[/tex]
Step 1. Multiply [tex]\(-1.5\)[/tex] by [tex]\(181\)[/tex]:
[tex]$$
-1.5 \times 181 = -271.5.
$$[/tex]
Step 2. Subtract [tex]\(1000\)[/tex]:
Subtract [tex]\(1000\)[/tex] from [tex]\(-271.5\)[/tex] to obtain the computed right-hand side of the equation:
[tex]$$
-271.5 - 1000 = -1271.5.
$$[/tex]
Step 3. Compare to the left-hand side:
The equation given is
[tex]$$
1 = -1271.5.
$$[/tex]
To see how far apart these two values are, we find the difference between the left-hand side [tex]\(1\)[/tex] and the computed right-hand side [tex]\(-1271.5\)[/tex]:
[tex]$$
1 - (-1271.5) = 1 + 1271.5 = 1272.5.
$$[/tex]
Thus, the intermediate results are as follows:
- The product [tex]\( -1.5 \times 181 \)[/tex] is [tex]\(-271.5\)[/tex].
- The computed right-hand side, after subtracting [tex]\(1000\)[/tex], is [tex]\(-1271.5\)[/tex].
- The difference between [tex]\(1\)[/tex] (the left-hand side) and the computed right-hand side is [tex]\(1272.5\)[/tex].