College

Simplify [tex]\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}[/tex] completely.

A. [tex]25x^3[/tex]
B. [tex]25x[/tex]
C. [tex]5x^3[/tex]
D. [tex]5x[/tex]

Answer :

To simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], we'll use the property of cube roots:

[tex]\[
\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}
\][/tex]

1. Identify the Terms:
- We have [tex]\(a = 5x\)[/tex] and [tex]\(b = 25x^2\)[/tex].

2. Multiply the Terms Inside the Cube Root:
- First, multiply the numerical coefficients: [tex]\(5 \cdot 25 = 125\)[/tex].
- Next, multiply the [tex]\(x\)[/tex] terms: [tex]\(x \cdot x^2 = x^3\)[/tex].

3. Combine the Results:
- This gives us: [tex]\(\sqrt[3]{125x^3}\)[/tex].

4. Simplify the Cube Root:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] ([tex]\(5 \cdot 5 \cdot 5 = 125\)[/tex]).
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] (since [tex]\((x) \cdot (x) \cdot (x) = x^3\)[/tex]).

5. Combine the Simplified Parts:
- Thus, [tex]\(\sqrt[3]{125x^3} = 5x\)[/tex].

So, the simplified form of [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] is [tex]\(\boxed{5x}\)[/tex].