College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]$\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}$[/tex] completely.

A. [tex]$25x^3$[/tex]
B. [tex]$25x$[/tex]
C. [tex]$5x^3$[/tex]
D. [tex]$5x$[/tex]

Answer :

Let's simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] step by step.

### Step 1: Apply the property of radicals
We use the property that states [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. Here, both are cube roots ([tex]\(\sqrt[3]{}\)[/tex]), so we can combine them:

[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

### Step 2: Simplify the expression under the cube root
First, calculate the product inside the cube root:

- Multiply the numbers: [tex]\(5 \times 25 = 125\)[/tex]
- Multiply the variables: [tex]\(x \times x^2 = x^{1+2} = x^3\)[/tex]

Now, combine them under the cube root:

[tex]\[
\sqrt[3]{125x^3}
\][/tex]

### Step 3: Simplify the cube root
Since [tex]\(125 = 5^3\)[/tex], we write the expression as:

[tex]\[
\sqrt[3]{(5^3) \cdot (x^3)}
\][/tex]

Taking the cube root of each part, we get:

[tex]\[
5 \cdot x = 5x
\][/tex]

### Conclusion
The completely simplified expression is [tex]\(5x\)[/tex].