College

Simplify [tex]$\sqrt[3]{5 x} \cdot \sqrt[3]{25 x^2}$[/tex] completely.

A. [tex]$25 x$[/tex]
B. [tex]$25 x^3$[/tex]
C. [tex]$5 x^3$[/tex]
D. [tex]$5 x$[/tex]

Answer :

Let's simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex].

1. Use the property of cube roots:
The property of cube roots tells us that [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex].

2. Combine the expressions under a single cube root:
[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

3. Multiply inside the cube root:
[tex]\[
(5x) \cdot (25x^2) = 5 \cdot 25 \cdot x \cdot x^2 = 125x^3
\][/tex]

4. Simplify the expression:
Now we have [tex]\(\sqrt[3]{125x^3}\)[/tex].

5. Calculate the cube root:
[tex]\[
\sqrt[3]{125x^3} = \sqrt[3]{125} \cdot \sqrt[3]{x^3}
\][/tex]
- The cube root of 125 is 5 because [tex]\(5 \cdot 5 \cdot 5 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex].

6. Put it together:
[tex]\[
\sqrt[3]{125x^3} = 5 \cdot x = 5x
\][/tex]

Therefore, the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] simplifies to [tex]\(5x\)[/tex].

The correct answer is [tex]\(5x\)[/tex].