College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]\sqrt[3]{5 x} \cdot \sqrt[3]{25 x^2}[/tex] completely.

A. [tex]25 x^3[/tex]
B. [tex]25 x[/tex]
C. [tex]5 x^3[/tex]
D. [tex]5 x[/tex]

Answer :

Sure! Let's go through the problem step-by-step.

We need to simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex].

1. Understand the Cube Root Property:
The product of cube roots can be combined as a single cube root:
[tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex].
So, [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}\)[/tex].

2. Multiply Inside the Cube Root:
Now, multiply the expressions inside the cube root:
[tex]\((5x) \cdot (25x^2) = 5 \cdot 25 \cdot x \cdot x^2\)[/tex].

3. Simplify the Multiplication:
- Multiply the coefficients: [tex]\(5 \cdot 25 = 125\)[/tex].
- Combine the powers of [tex]\(x\)[/tex]: [tex]\(x \cdot x^2 = x^3\)[/tex].
So, the expression inside the cube root becomes [tex]\(125x^3\)[/tex].

4. Simplify the Cube Root:
We need to find [tex]\(\sqrt[3]{125x^3}\)[/tex].
- The cube root of 125 is 5 because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].

5. Combine the Results:
Therefore, [tex]\(\sqrt[3]{125x^3}\)[/tex] simplifies to [tex]\(5x\)[/tex].

So, the final simplified result of the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] is [tex]\(\boxed{5x}\)[/tex].