College

Simplify [tex]\left(7x + 2 + 8x^4\right) - \left(2x - 5 - 8x^4\right) + \left(3x + 5x^4\right)[/tex].

A) [tex]15x^4 + 14x + 7[/tex]

B) [tex]15x^4 + 19x + 7[/tex]

C) [tex]21x^4 + 14x + 7[/tex]

D) [tex]21x^4 + 8x + 7[/tex]

Answer :

We start with the expression

[tex]$$
(7x + 2 + 8x^4) - (2x - 5 - 8x^4) + (3x + 5x^4).
$$[/tex]

Step 1: Distribute the Minus Sign

In the second group, distribute the negative sign:

[tex]$$
-(2x - 5 - 8x^4) = -2x + 5 + 8x^4.
$$[/tex]

Now the expression becomes:

[tex]$$
7x + 2 + 8x^4 - 2x + 5 + 8x^4 + 3x + 5x^4.
$$[/tex]

Step 2: Combine Like Terms

Group the like terms together.

1. [tex]$x^4$[/tex] Terms:

[tex]$$
8x^4 + 8x^4 + 5x^4 = 21x^4.
$$[/tex]

2. [tex]$x$[/tex] Terms:

[tex]$$
7x - 2x + 3x = 8x.
$$[/tex]

3. Constant Terms:

[tex]$$
2 + 5 = 7.
$$[/tex]

Step 3: Write the Simplified Expression

Putting it all together, we have:

[tex]$$
21x^4 + 8x + 7.
$$[/tex]

Thus, the simplified expression is

[tex]$$
\boxed{21x^4 + 8x + 7},
$$[/tex]

which corresponds to choice D.