College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the equation by using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

a. [tex]x = -\frac{13}{15}, 0[/tex]
b. [tex]x = 0[/tex]
c. [tex]x = \frac{13}{15}, 0[/tex]
d. [tex]x = \pm \frac{13}{15}[/tex]

Please select the best answer from the choices provided:
A
B
C
D

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, let's follow these steps:

1. Identify the coefficients:
- The equation is in the form [tex]\(ax^2 + bx + c = 0\)[/tex].
- Here, [tex]\(a = 15\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 0\)[/tex].

2. Quadratic Formula:
- The quadratic formula is [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex].

3. Calculate the discriminant:
- The discriminant is [tex]\(b^2 - 4ac\)[/tex].
- Substitute the values: [tex]\(13^2 - 4 \times 15 \times 0 = 169\)[/tex].

4. Solve for [tex]\(x\)[/tex]:
- Since the discriminant is positive (169), there are two solutions.
- Calculate each solution:
- [tex]\(x_1 = \frac{-13 + \sqrt{169}}{2 \times 15} = \frac{-13 + 13}{30} = \frac{0}{30} = 0\)[/tex].
- [tex]\(x_2 = \frac{-13 - \sqrt{169}}{2 \times 15} = \frac{-13 - 13}{30} = \frac{-26}{30} = -\frac{13}{15}\)[/tex].

5. Conclusion:
- The solutions to the quadratic equation [tex]\(15x^2 + 13x = 0\)[/tex] are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

Among the given choices, the correct answer is A: [tex]\(x = -\frac{13}{15}, 0\)[/tex].