College

Simplify [tex]\left(5x^3 + 7x - 8\right) + \left(2x^3 - 5x^2 - x + 3\right)[/tex]. Choose the standard form of the answer.

A. [tex]7x^3 + 6x - 5x^2 - 5[/tex]

B. [tex]7x^3 - 5x^2 + 6x - 5[/tex]

C. [tex]7x^3 - 5x^2 + 6x + 5[/tex]

D. [tex]7x^3 - 5x^2 + 8x - 5[/tex]

Answer :

We begin with the two polynomials:

$$5x^3 + 7x - 8 \quad \text{and} \quad 2x^3 - 5x^2 - x + 3.$$

**Step 1. Arrange and identify like terms**

Write both polynomials with all terms (note that the first polynomial has no $x^2$ term):

- First polynomial: $$5x^3 + 0x^2 + 7x - 8.$$
- Second polynomial: $$2x^3 - 5x^2 - x + 3.$$

**Step 2. Combine like terms**

1. **$x^3$ terms:**
$$5x^3 + 2x^3 = 7x^3.$$

2. **$x^2$ terms:**
$$0x^2 - 5x^2 = -5x^2.$$

3. **$x$ terms:**
$$7x - x = 6x.$$

4. **Constant terms:**
$$-8 + 3 = -5.$$

**Step 3. Write the simplified expression**

After combining like terms, the simplified expression in standard form is:

$$7x^3 - 5x^2 + 6x - 5.$$

This corresponds to option B.