Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]\left(3 x^2\right)\left(4 x^3\right)[/tex].

A. [tex]12 x^5[/tex]
B. [tex]7 x^5[/tex]
C. [tex]7 x^6[/tex]
D. [tex]12 x^6[/tex]

Answer :

Sure, let's simplify the expression [tex]\((3x^2)(4x^3)\)[/tex].

1. Multiply the Coefficients:
- First, identify the numerical coefficients in each expression. Here, we have 3 and 4.
- Multiply these coefficients: [tex]\(3 \times 4 = 12\)[/tex].

2. Add the Exponents of [tex]\(x\)[/tex]:
- Next, look at the powers of [tex]\(x\)[/tex] in each part of the expression. We have [tex]\(x^2\)[/tex] and [tex]\(x^3\)[/tex].
- When multiplying expressions with the same base, you add the exponents: [tex]\(2 + 3 = 5\)[/tex].

3. Combine the Results:
- Now, combine the simplified coefficient and the power of [tex]\(x\)[/tex]: [tex]\(12x^5\)[/tex].

So, the simplified expression is [tex]\(12x^5\)[/tex].

The correct choice from the options given is [tex]\(\boxed{12x^5}\)[/tex].