College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify:

[tex]3 x^2 y^3 \cdot 4 x^3 y[/tex]

A. [tex]12 x^6 y^3[/tex]

B. [tex]7 x^5 y^4[/tex]

C. [tex]12 x^5 y^3[/tex]

D. [tex]7 x^6 y^3[/tex]

E. [tex]12 x^5 y^4[/tex]

Answer :

Let's simplify the expression [tex]\(3x^2 y^3 \cdot 4x^3 y\)[/tex] step by step.

1. Multiply the coefficients:
The coefficients in the expression are 3 and 4.
Multiply them: [tex]\(3 \times 4 = 12\)[/tex].

2. Add the exponents for [tex]\(x\)[/tex]:
[tex]\(x^2\)[/tex] and [tex]\(x^3\)[/tex] are the powers of [tex]\(x\)[/tex] in the expression.
To combine them, add the exponents: [tex]\(2 + 3 = 5\)[/tex].
So, the exponent for [tex]\(x\)[/tex] in the simplified expression is [tex]\(x^5\)[/tex].

3. Add the exponents for [tex]\(y\)[/tex]:
[tex]\(y^3\)[/tex] and [tex]\(y^1\)[/tex] (remember, [tex]\(y\)[/tex] is the same as [tex]\(y^1\)[/tex]) are the powers of [tex]\(y\)[/tex].
Add the exponents: [tex]\(3 + 1 = 4\)[/tex].
So, the exponent for [tex]\(y\)[/tex] in the simplified expression is [tex]\(y^4\)[/tex].

Putting it all together, the simplified form of the expression is:
[tex]\[12x^5 y^4\][/tex]

Therefore, the correct answer is option E. [tex]\(12x^5 y^4\)[/tex].