College

Simplify

[tex]14x^5(13x^2 + 13x^5)[/tex]

A. [tex]27x^{10} + 27x^{25}[/tex]
B. [tex]182x^{10} + 13x^5[/tex]
C. [tex]182x^7 + 182x^{10}[/tex]
D. [tex]27x^7 + 27x^{10}[/tex]

Answer :

To simplify the expression [tex]\(14x^5(13x^2 + 13x^5)\)[/tex], you need to use the distributive property. Here’s how you can do it step by step:

1. Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses:

- First, multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^2\)[/tex]:
[tex]\[
14x^5 \times 13x^2 = (14 \times 13) \times x^{5+2} = 182x^7
\][/tex]

- Then, multiply [tex]\(14x^5\)[/tex] by [tex]\(13x^5\)[/tex]:
[tex]\[
14x^5 \times 13x^5 = (14 \times 13) \times x^{5+5} = 182x^{10}
\][/tex]

2. Combine the results:

The simplified expression after distributing is:
[tex]\[
182x^7 + 182x^{10}
\][/tex]

From the provided options, the correct choice is:

c. [tex]\(182x^7 + 182x^{10}\)[/tex]

This answer shows that we've distributed and combined the terms correctly using the rules of exponents and multiplication.