High School

Simplify each expression.

a. [tex]$-42 + (-17)$[/tex]

b. [tex]$8 - (-9)$[/tex]

c. [tex]$8 \cdot (-9)$[/tex]

d. [tex]$-42 \div (-7)$[/tex]

e. [tex]$-2 \cdot (-3) \cdot (-4)$[/tex]

f. [tex]$-18 - 7$[/tex]

g. [tex]$(-5)^2$[/tex]

h. [tex]$5^2$[/tex]

i. [tex]$\sqrt{49}$[/tex]

Answer :

Sure! Let's simplify each expression step-by-step:

a. [tex]\(-42 + (-17)\)[/tex]
- Combining the two negative numbers, we get:
- [tex]\(-42 + (-17) = -42 - 17 = -59\)[/tex]

b. [tex]\(8 - (-9)\)[/tex]
- Subtracting a negative number is equivalent to adding the positive:
- [tex]\(8 - (-9) = 8 + 9 = 17\)[/tex]

c. [tex]\(8(-9)\)[/tex]
- Multiplying a positive number by a negative number gives a negative result:
- [tex]\(8 \times (-9) = -72\)[/tex]

d. [tex]\(-42 \div (-7)\)[/tex]
- Dividing two negative numbers yields a positive result:
- [tex]\(-42 \div (-7) = 6\)[/tex]

e. [tex]\(-2(-3)(-4)\)[/tex]
- Multiplying two negative numbers results in a positive number, and then multiplying again by a negative number:
- [tex]\(-2 \times -3 = 6\)[/tex]
- [tex]\(6 \times -4 = -24\)[/tex]

f. [tex]\(-18 - 7\)[/tex]
- Combining the negative numbers:
- [tex]\(-18 - 7 = -25\)[/tex]

g. [tex]\((-5)^2\)[/tex]
- Squaring a negative number yields a positive result:
- [tex]\((-5) \times (-5) = 25\)[/tex]

h. [tex]\(5^2\)[/tex]
- Squaring a positive number:
- [tex]\(5 \times 5 = 25\)[/tex]

i. [tex]\(\sqrt{49}\)[/tex]
- The square root of 49:
- [tex]\(\sqrt{49} = 7\)[/tex]

So the simplified results are:
a. [tex]\(-59\)[/tex]
b. [tex]\(17\)[/tex]
c. [tex]\(-72\)[/tex]
d. [tex]\(6\)[/tex]
e. [tex]\(-24\)[/tex]
f. [tex]\(-25\)[/tex]
g. [tex]\(25\)[/tex]
h. [tex]\(25\)[/tex]
i. [tex]\(7\)[/tex]