Answer :
We start by letting the number be represented by [tex]$x$[/tex]. The phrase “15 less than a number” means that we subtract [tex]$15$[/tex] from [tex]$x$[/tex], giving the expression [tex]$x - 15$[/tex]. The statement “is 22” tells us that:
[tex]$$
x - 15 = 22
$$[/tex]
Next, we solve this equation by isolating [tex]$x$[/tex]. To do that, we add [tex]$15$[/tex] to both sides:
[tex]$$
\begin{aligned}
x - 15 + 15 &= 22 + 15 \\
x &= 37
\end{aligned}
$$[/tex]
Thus, the number [tex]$x$[/tex] is [tex]$37$[/tex]. The equation and solution that match this situation are:
[tex]$$
x - 15 = 22 \quad \text{and} \quad x = 37
$$[/tex]
This corresponds to Option A.
[tex]$$
x - 15 = 22
$$[/tex]
Next, we solve this equation by isolating [tex]$x$[/tex]. To do that, we add [tex]$15$[/tex] to both sides:
[tex]$$
\begin{aligned}
x - 15 + 15 &= 22 + 15 \\
x &= 37
\end{aligned}
$$[/tex]
Thus, the number [tex]$x$[/tex] is [tex]$37$[/tex]. The equation and solution that match this situation are:
[tex]$$
x - 15 = 22 \quad \text{and} \quad x = 37
$$[/tex]
This corresponds to Option A.