College

Select the correct answer.

Which quadratic expression represents the product of these factors: [tex](2x+5)(7-4x)[/tex]?

A. [tex]-8x^2-34x+35[/tex]
B. [tex]-8x^2+34x-35[/tex]
C. [tex]-8x^2-6x+35[/tex]
D. [tex]-8x^2+6x-35[/tex]

Answer :

To solve the problem of finding the quadratic expression that represents the product of the factors [tex]\((2x + 5)(7 - 4x)\)[/tex], we follow these steps:

1. Apply the Distributive Property: We need to distribute each term in the first parenthesis [tex]\((2x + 5)\)[/tex] to every term in the second parenthesis [tex]\((7 - 4x)\)[/tex].

2. Multiply the First Terms:
- [tex]\(2x \times 7 = 14x\)[/tex]

3. Multiply the Outer Terms:
- [tex]\(2x \times (-4x) = -8x^2\)[/tex]

4. Multiply the Inner Terms:
- [tex]\(5 \times 7 = 35\)[/tex]

5. Multiply the Last Terms:
- [tex]\(5 \times (-4x) = -20x\)[/tex]

6. Combine All the Terms:
- You then add all these results together: [tex]\(-8x^2 + 14x + 35 - 20x\)[/tex].

7. Combine Like Terms:
- Combine the [tex]\(x\)[/tex] terms: [tex]\(14x - 20x = -6x\)[/tex]

Putting it all together, the expanded expression becomes:
[tex]\[-8x^2 - 6x + 35\][/tex]

Thus, the quadratic expression representing the product of the given factors is [tex]\(-8x^2 - 6x + 35\)[/tex].

The correct option is:
C. [tex]\(-8x^2 - 6x + 35\)[/tex]