College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Which quadratic expression represents the product of these factors?

[tex]$(2x + 5)(7 - 4x)$[/tex]

A. [tex]$-8x^2 - 6x + 35$[/tex]
B. [tex]$-8x^2 + 6x - 35$[/tex]
C. [tex]$-8x^2 - 34x + 35$[/tex]
D. [tex]$-8x^2 + 34x - 35$[/tex]

Answer :

To solve the problem of finding the quadratic expression that represents the product of the factors [tex]\((2x+5)(7-4x)\)[/tex], we can use the distributive property or the FOIL method. Here’s how to do it step-by-step:

1. First (F): Multiply the first terms in each binomial.
[tex]\[ 2x \times 7 = 14x \][/tex]

2. Outer (O): Multiply the outer terms in the expression.
[tex]\[ 2x \times (-4x) = -8x^2 \][/tex]

3. Inner (I): Multiply the inner terms.
[tex]\[ 5 \times 7 = 35 \][/tex]

4. Last (L): Multiply the last terms in each binomial.
[tex]\[ 5 \times (-4x) = -20x \][/tex]

5. Combine all the products from the steps above to get the expanded expression:

[tex]\[ -8x^2 + 14x - 20x + 35 \][/tex]

6. Simplify by combining like terms:
[tex]\[ -8x^2 + (14x - 20x) + 35 \][/tex]
[tex]\[ -8x^2 - 6x + 35 \][/tex]

Therefore, the quadratic expression is:

[tex]\[ -8x^2 - 6x + 35 \][/tex]

This matches with option A:

A. [tex]\(-8x^2 - 6x + 35\)[/tex]