College

Select the correct answer.

Which quadratic expression represents the product of these factors?

[tex]$(2x + 5)(7 - 4x)$[/tex]

A. [tex]$-8x^2 - 6x + 35$[/tex]
B. [tex]$-8x^2 + 6x - 35$[/tex]
C. [tex]$-8x^2 - 34x + 35$[/tex]
D. [tex]$-8x^2 + 34x - 35$[/tex]

Answer :

To solve the problem of finding the quadratic expression that represents the product of the factors [tex]\((2x+5)(7-4x)\)[/tex], we can use the distributive property or the FOIL method. Here’s how to do it step-by-step:

1. First (F): Multiply the first terms in each binomial.
[tex]\[ 2x \times 7 = 14x \][/tex]

2. Outer (O): Multiply the outer terms in the expression.
[tex]\[ 2x \times (-4x) = -8x^2 \][/tex]

3. Inner (I): Multiply the inner terms.
[tex]\[ 5 \times 7 = 35 \][/tex]

4. Last (L): Multiply the last terms in each binomial.
[tex]\[ 5 \times (-4x) = -20x \][/tex]

5. Combine all the products from the steps above to get the expanded expression:

[tex]\[ -8x^2 + 14x - 20x + 35 \][/tex]

6. Simplify by combining like terms:
[tex]\[ -8x^2 + (14x - 20x) + 35 \][/tex]
[tex]\[ -8x^2 - 6x + 35 \][/tex]

Therefore, the quadratic expression is:

[tex]\[ -8x^2 - 6x + 35 \][/tex]

This matches with option A:

A. [tex]\(-8x^2 - 6x + 35\)[/tex]