Answer :
To evaluate [tex]\( f(2) \)[/tex] for the function [tex]\( f(t) = 100 \times (1.07)^t \)[/tex], you need to substitute [tex]\( t = 2 \)[/tex] into the function and perform the calculations step-by-step.
1. Start with the function: [tex]\( f(t) = 100 \times (1.07)^t \)[/tex].
2. Substitute [tex]\( t = 2 \)[/tex] into the function: [tex]\( f(2) = 100 \times (1.07)^2 \)[/tex].
3. Calculate [tex]\( (1.07)^2 \)[/tex]:
- [tex]\( 1.07 \times 1.07 = 1.1449 \)[/tex].
4. Multiply the result by 100:
- [tex]\( 100 \times 1.1449 = 114.49 \)[/tex].
So, [tex]\( f(2) = 114.49 \)[/tex].
The correct answer is [tex]\( c. 114.49 \)[/tex].
1. Start with the function: [tex]\( f(t) = 100 \times (1.07)^t \)[/tex].
2. Substitute [tex]\( t = 2 \)[/tex] into the function: [tex]\( f(2) = 100 \times (1.07)^2 \)[/tex].
3. Calculate [tex]\( (1.07)^2 \)[/tex]:
- [tex]\( 1.07 \times 1.07 = 1.1449 \)[/tex].
4. Multiply the result by 100:
- [tex]\( 100 \times 1.1449 = 114.49 \)[/tex].
So, [tex]\( f(2) = 114.49 \)[/tex].
The correct answer is [tex]\( c. 114.49 \)[/tex].