College

Select the correct answer.

Which quadratic expression represents the product of these factors?
[tex]$(2x + 5)(7 - 4x)$[/tex]

A. [tex]$-8x^2 + 34x - 35$[/tex]
B. [tex][tex]$-8x^2 - 6x + 35$[/tex][/tex]
C. [tex]$-8x^2 + 6x - 35$[/tex]
D. [tex]$-8x^2 - 34x + 35$[/tex]

Answer :

Let's solve the problem step by step:

We want to multiply the two binomials: [tex]\((2x + 5)(7 - 4x)\)[/tex].

1. Use the Distributive Property (FOIL method):

Multiply each term in the first binomial by each term in the second binomial:

- First terms: Multiply the first terms in each binomial:
[tex]\(2x \cdot 7 = 14x\)[/tex]

- Outer terms: Multiply the outer terms:
[tex]\(2x \cdot (-4x) = -8x^2\)[/tex]

- Inner terms: Multiply the inner terms:
[tex]\(5 \cdot 7 = 35\)[/tex]

- Last terms: Multiply the last terms:
[tex]\(5 \cdot (-4x) = -20x\)[/tex]

2. Combine like terms:

Add the results from the four steps:

- Combine the [tex]\(x\)[/tex] terms:
[tex]\[14x - 20x = -6x\][/tex]

The final expression is:
[tex]\[-8x^2 - 6x + 35\][/tex]

3. Identify the correct expression from the options:

Look for the expression that matches [tex]\(-8x^2 - 6x + 35\)[/tex]:

- A. [tex]\(-8x^2 + 34x - 35\)[/tex]
- B. [tex]\(-8x^2 - 6x + 35\)[/tex]
- C. [tex]\(-8x^2 + 6x - 35\)[/tex]
- D. [tex]\(-8x^2 - 34x + 35\)[/tex]

The correct quadratic expression that represents the product of the given factors is option B: [tex]\(-8x^2 - 6x + 35\)[/tex].