College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Perform the indicated operation for each polynomial sum or difference.

1. [tex]\(\left(-9x^4 - 8x^3 - 10x\right) + \left(10x^4 + 8x^3 + 5\right) =\)[/tex]

2. [tex]\(\left(-3x^4 + 9x^3 + 2x^2\right) - \left(-6x^4 - 9x^3 - 8x\right) =\)[/tex]

Answer :

Sure! Let's go through each polynomial operation step by step.

### First Polynomial Operation: Addition

We want to perform the operation:
[tex]\[
(-9x^4 - 8x^3 - 10x) + (10x^4 + 8x^3 + 5)
\][/tex]

1. Combine the [tex]\(x^4\)[/tex] terms:
- [tex]\(-9x^4 + 10x^4 = 1x^4\)[/tex]

2. Combine the [tex]\(x^3\)[/tex] terms:
- [tex]\(-8x^3 + 8x^3 = 0x^3\)[/tex]

3. Combine the [tex]\(x\)[/tex] terms:
- [tex]\(-10x\)[/tex]

4. Combine constant terms:
- [tex]\(0 + 5 = 5\)[/tex]

Putting it all together, we have:
[tex]\[
1x^4 + 0x^3 + 0x^2 - 10x + 5
\][/tex]
So, the result is:
[tex]\[
x^4 - 10x + 5
\][/tex]

### Second Polynomial Operation: Subtraction

We want to perform the operation:
[tex]\[
(-3x^4 + 9x^3 + 2x^2) - (-6x^4 - 9x^3 - 8x)
\][/tex]

1. Combine the [tex]\(x^4\)[/tex] terms:
- [tex]\(-3x^4 - (-6x^4) = -3x^4 + 6x^4 = 3x^4\)[/tex]

2. Combine the [tex]\(x^3\)[/tex] terms:
- [tex]\(9x^3 - (-9x^3) = 9x^3 + 9x^3 = 18x^3\)[/tex]

3. Combine the [tex]\(x^2\)[/tex] terms:
- [tex]\(2x^2 - 0 = 2x^2\)[/tex]

4. Combine the [tex]\(x\)[/tex] terms:
- [tex]\(0 - (-8x) = 0 + 8x = 8x\)[/tex]

Putting it all together, we have:
[tex]\[
3x^4 + 18x^3 + 2x^2 + 8x
\][/tex]
So, the result is:
[tex]\[
3x^4 + 18x^3 + 2x^2 + 8x
\][/tex]

That's it! These are the results for each operation on the polynomials.