Answer :
Sure! Let's find the quadratic expression representing the product of the factors [tex]\((2x + 5)\)[/tex] and [tex]\((7 - 4x)\)[/tex].
To do this, we'll use the distributive property, often remembered as the FOIL method, which stands for First, Outer, Inner, Last.
1. First: Multiply the first terms in each binomial:
[tex]\[
2x \times 7 = 14x
\][/tex]
2. Outer: Multiply the outer terms:
[tex]\[
2x \times (-4x) = -8x^2
\][/tex]
3. Inner: Multiply the inner terms:
[tex]\[
5 \times 7 = 35
\][/tex]
4. Last: Multiply the last terms:
[tex]\[
5 \times (-4x) = -20x
\][/tex]
Now, combine all the results from these steps:
[tex]\[
-8x^2 + 14x - 20x + 35
\][/tex]
Combine like terms [tex]\((14x - 20x)\)[/tex]:
[tex]\[
-8x^2 - 6x + 35
\][/tex]
Therefore, the quadratic expression is [tex]\(-8x^2 - 6x + 35\)[/tex].
This matches option C in the list:
[tex]\[
\text{C. } -8x^2 - 6x + 35
\][/tex]
So, the correct answer is option C.
To do this, we'll use the distributive property, often remembered as the FOIL method, which stands for First, Outer, Inner, Last.
1. First: Multiply the first terms in each binomial:
[tex]\[
2x \times 7 = 14x
\][/tex]
2. Outer: Multiply the outer terms:
[tex]\[
2x \times (-4x) = -8x^2
\][/tex]
3. Inner: Multiply the inner terms:
[tex]\[
5 \times 7 = 35
\][/tex]
4. Last: Multiply the last terms:
[tex]\[
5 \times (-4x) = -20x
\][/tex]
Now, combine all the results from these steps:
[tex]\[
-8x^2 + 14x - 20x + 35
\][/tex]
Combine like terms [tex]\((14x - 20x)\)[/tex]:
[tex]\[
-8x^2 - 6x + 35
\][/tex]
Therefore, the quadratic expression is [tex]\(-8x^2 - 6x + 35\)[/tex].
This matches option C in the list:
[tex]\[
\text{C. } -8x^2 - 6x + 35
\][/tex]
So, the correct answer is option C.