High School

Select the correct answer.

Which quadratic expression represents the product of these factors?

[tex]$(2x + 5)(7 - 4x)$[/tex]

A. [tex]$-8x^2 - 6x + 35$[/tex]
B. [tex]$-8x^2 + 6x - 35$[/tex]
C. [tex]$-8x^2 + 34x - 35$[/tex]
D. [tex]$-8x^2 - 34x + 35$[/tex]

Answer :

Sure! Let's find the product of the factors [tex]\((2x + 5)\)[/tex] and [tex]\((7 - 4x)\)[/tex] step-by-step using the distributive property, also known as the FOIL method (First, Outside, Inside, Last).

1. First: Multiply the first terms in each binomial:

[tex]\(2x \cdot 7 = 14x\)[/tex]

2. Outside: Multiply the outer terms in the binomials:

[tex]\(2x \cdot (-4x) = -8x^2\)[/tex]

3. Inside: Multiply the inner terms in the binomials:

[tex]\(5 \cdot 7 = 35\)[/tex]

4. Last: Multiply the last terms in each binomial:

[tex]\(5 \cdot (-4x) = -20x\)[/tex]

Now, add all the terms together:

[tex]\[-8x^2 + 14x + 35 - 20x\][/tex]

Combine the like terms [tex]\(14x\)[/tex] and [tex]\(-20x\)[/tex]:

[tex]\[-8x^2 + (14x - 20x) + 35 = -8x^2 - 6x + 35\][/tex]

Therefore, the quadratic expression that represents the product of the factors [tex]\((2x + 5)(7 - 4x)\)[/tex] is:

A. [tex]\(-8x^2 - 6x + 35\)[/tex]