College

Select the correct answer.

What is the domain of the function [tex]h[/tex]?

[tex]h(x) = \sqrt{x-7} + 5[/tex]

A. [tex]x \leq 5[/tex]
B. [tex]x \leq -7[/tex]
C. [tex]x \geq 5[/tex]
D. [tex]x \geq 7[/tex]

Answer :

To find the domain of the function
[tex]$$
h(x)=\sqrt{x-7}+5,
$$[/tex]
we need to ensure that the expression inside the square root is non-negative. This is because the square root function is defined only for non-negative numbers.

1. Set up the inequality for the radicand (the expression inside the square root):
[tex]$$
x - 7 \geq 0.
$$[/tex]

2. Solve the inequality:
[tex]$$
x \geq 7.
$$[/tex]

This means that [tex]$x$[/tex] can be any real number greater than or equal to 7. Thus, the domain of the function is all real numbers [tex]$x$[/tex] such that [tex]$x \geq 7$[/tex].

The correct answer is:

[tex]$$
\boxed{x \geq 7.}
$$[/tex]