College

Select the correct answer.



This table defines a function.



\[

\begin{array}{|c|c|c|c|c|}

\hline

x & 7 & 10 & 13 & 16 \\

\hline

y & 21 & 30 & 39 & 48 \\

\hline

\end{array}

\]



Which table represents the inverse of the function defined above?



A.

\[

\begin{array}{|c|c|c|c|c|}

\hline

x & 21 & 30 & 39 & 48 \\

\hline

y & 7 & 10 & 13 & 16 \\

\hline

\end{array}

\]



B.

\[

\begin{array}{|c|c|c|c|c|}

\hline

x & -7 & -10 & -13 & -16 \\

\hline

y & 21 & 30 & 39 & 48 \\

\hline

\end{array}

\]



C.

\[

\begin{array}{|c|c|c|c|c|}

\hline

x & 7 & 10 & 13 & 16 \\

\hline

y & -21 & -30 & -39 & -48 \\

\hline

\end{array}

\]



D.

\[

\begin{array}{|c|c|c|c|c|}

\hline

x & -21 & -30 & -39 & -48 \\

\hline

y & 7 & 10 & 13 & 16 \\

\hline

\end{array}

\]

Answer :

We start with the function defined by the set of pairs:

$$
(7, 21),\; (10, 30),\; (13, 39),\; (16, 48).
$$

To determine the inverse function, we swap the $x$-values with the $y$-values. This gives us the following pairs for the inverse:

$$
(21, 7),\; (30, 10),\; (39, 13),\; (48, 16).
$$

This new set shows that in the inverse function, the $x$-values are $21$, $30$, $39$, and $48$, and the corresponding $y$-values are $7$, $10$, $13$, and $16$. Comparing with the answer choices, we see that option A is represented by:

$$
\begin{array}{|c|c|c|c|c|}
\hline
x & 21 & 30 & 39 & 48 \\
\hline
y & 7 & 10 & 13 & 16 \\
\hline
\end{array}
$$

Thus, option A is the correct answer.