Answer :
Sure, let's solve the problem step by step.
1. Identify the variables:
- Let one of the integers be [tex]\( x \)[/tex].
- Let the other integer be [tex]\( y \)[/tex].
2. Use the given relationships:
- The product of the two integers is 112, so we have:
[tex]\[
x \cdot y = 112
\][/tex]
- One number [tex]\( y \)[/tex] is four more than three times the other number [tex]\( x \)[/tex], which gives us:
[tex]\[
y = 3x + 4
\][/tex]
3. Substitute [tex]\( y \)[/tex] in the product equation:
- Substitute [tex]\( y = 3x + 4 \)[/tex] into [tex]\( x \cdot y = 112 \)[/tex]:
[tex]\[
x \cdot (3x + 4) = 112
\][/tex]
4. Expand and simplify the equation:
- Multiply [tex]\( x \)[/tex] with each term inside the parentheses:
[tex]\[
3x^2 + 4x = 112
\][/tex]
5. Resulting equation:
- The equation that can be used to find one of the numbers is:
[tex]\[
3x^2 + 4x = 112
\][/tex]
6. Conclusion:
- From the steps above, we can see that the correct equation is:
[tex]\[
3x^2 + 4x = 112
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{A. \ 3x^2 + 4x = 112}
\][/tex]
1. Identify the variables:
- Let one of the integers be [tex]\( x \)[/tex].
- Let the other integer be [tex]\( y \)[/tex].
2. Use the given relationships:
- The product of the two integers is 112, so we have:
[tex]\[
x \cdot y = 112
\][/tex]
- One number [tex]\( y \)[/tex] is four more than three times the other number [tex]\( x \)[/tex], which gives us:
[tex]\[
y = 3x + 4
\][/tex]
3. Substitute [tex]\( y \)[/tex] in the product equation:
- Substitute [tex]\( y = 3x + 4 \)[/tex] into [tex]\( x \cdot y = 112 \)[/tex]:
[tex]\[
x \cdot (3x + 4) = 112
\][/tex]
4. Expand and simplify the equation:
- Multiply [tex]\( x \)[/tex] with each term inside the parentheses:
[tex]\[
3x^2 + 4x = 112
\][/tex]
5. Resulting equation:
- The equation that can be used to find one of the numbers is:
[tex]\[
3x^2 + 4x = 112
\][/tex]
6. Conclusion:
- From the steps above, we can see that the correct equation is:
[tex]\[
3x^2 + 4x = 112
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{A. \ 3x^2 + 4x = 112}
\][/tex]