College

Select the correct answer.

The average summer temperature in Anchorage is [tex]69^{\circ} F[/tex]. If the daily temperature is normally distributed with a standard deviation of [tex]7^{\circ} F[/tex], what percentage of the time would the temperature be between [tex]55^{\circ} F[/tex] and [tex]76^{\circ} F[/tex]?

A. [tex]34.0 \%[/tex]
B. [tex]47.5 \%[/tex]
C. [tex]68.0 \%[/tex]
D. [tex]81.5 \%[/tex]
E. [tex]99.7 \%[/tex]

Answer :

We are given that the daily temperature is normally distributed with mean
[tex]$$\mu = 69^\circ F$$[/tex]
and standard deviation
[tex]$$\sigma = 7^\circ F.$$[/tex]

To find the probability that the temperature is between [tex]$55^\circ F$[/tex] and [tex]$76^\circ F$[/tex], we first convert these temperatures to [tex]$z$[/tex]-scores using the formula

[tex]$$
z = \frac{x - \mu}{\sigma}.
$$[/tex]

1. For [tex]$x = 55^\circ F$[/tex]:

[tex]$$
z_{\text{lower}} = \frac{55 - 69}{7} = \frac{-14}{7} = -2.
$$[/tex]

2. For [tex]$x = 76^\circ F$[/tex]:

[tex]$$
z_{\text{upper}} = \frac{76 - 69}{7} = \frac{7}{7} = 1.
$$[/tex]

Next, we use the cumulative distribution function (CDF) of the standard normal distribution to find the probabilities corresponding to these [tex]$z$[/tex]-scores. Let [tex]$\Phi(z)$[/tex] denote the CDF.

- For [tex]$z = 1$[/tex], the probability is approximately

[tex]$$
\Phi(1) \approx 0.8413.
$$[/tex]

- For [tex]$z = -2$[/tex], the probability is approximately

[tex]$$
\Phi(-2) \approx 0.0228.
$$[/tex]

The probability that the temperature is between [tex]$55^\circ F$[/tex] and [tex]$76^\circ F$[/tex] is given by

[tex]$$
P(55 \leq T \leq 76) = \Phi(1) - \Phi(-2) \approx 0.8413 - 0.0228 = 0.8185.
$$[/tex]

To express this as a percentage, we multiply by 100:

[tex]$$
0.8185 \times 100 \approx 81.85\%.
$$[/tex]

Thus, about [tex]$81.86\%$[/tex] of the time, the temperature is between [tex]$55^\circ F$[/tex] and [tex]$76^\circ F$[/tex]. This corresponds to option D.