College

Select the correct answer.

Simplify the following polynomial expression:

[tex]\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7)[/tex]

A. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 6[/tex]

B. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 8[/tex]

C. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 6[/tex]

D. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 8[/tex]

Answer :

To simplify the given polynomial expression step-by-step, we'll follow these steps:

We're given the expression:
[tex]\[
(5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2) - (-4x^3 + 5x - 1)(2x - 7)
\][/tex]

1. Combine the first two polynomials:

[tex]\[
(5x^4 - 9x^3 + 7x - 1) + (-8x^4 + 4x^2 - 3x + 2)
\][/tex]

Combine like terms:

- [tex]\( x^4 \)[/tex] terms: [tex]\( 5x^4 - 8x^4 = -3x^4 \)[/tex]
- [tex]\( x^3 \)[/tex] terms: [tex]\( -9x^3 \)[/tex]
- [tex]\( x^2 \)[/tex] terms: [tex]\( +4x^2 \)[/tex]
- [tex]\( x \)[/tex] terms: [tex]\( 7x - 3x = 4x \)[/tex]
- Constant terms: [tex]\( -1 + 2 = 1 \)[/tex]

So, this part simplifies to:

[tex]\[
-3x^4 - 9x^3 + 4x^2 + 4x + 1
\][/tex]

2. Simplify the product and subtraction of the third expression:

- We're given [tex]\((-4x^3 + 5x - 1)(2x - 7)\)[/tex].

Distribute the terms:

- [tex]\(-4x^3 \cdot 2x = -8x^4\)[/tex]
- [tex]\(-4x^3 \cdot -7 = 28x^3\)[/tex]
- [tex]\(5x \cdot 2x = 10x^2\)[/tex]
- [tex]\(5x \cdot -7 = -35x\)[/tex]
- [tex]\(-1 \cdot 2x = -2x\)[/tex]
- [tex]\(-1 \cdot -7 = 7\)[/tex]

Combine these results to get:

[tex]\(-8x^4 + 28x^3 + 10x^2 - 35x - 2x + 7 = -8x^4 + 28x^3 + 10x^2 - 37x + 7\)[/tex]

3. Subtract this expression from the first result:

[tex]\((-3x^4 - 9x^3 + 4x^2 + 4x + 1) - (-8x^4 + 28x^3 + 10x^2 - 37x + 7)\)[/tex]

Distribute the negative sign and combine like terms:

- [tex]\( x^4 \)[/tex] terms: [tex]\(-3x^4 - (-8x^4) = -3x^4 + 8x^4 = 5x^4\)[/tex]
- [tex]\( x^3 \)[/tex] terms: [tex]\(-9x^3 - 28x^3 = -37x^3\)[/tex]
- [tex]\( x^2 \)[/tex] terms: [tex]\(4x^2 - 10x^2 = -6x^2\)[/tex]
- [tex]\( x \)[/tex] terms: [tex]\(4x - (-37x) = 4x + 37x = 41x\)[/tex]
- Constant terms: [tex]\(1 - 7 = -6\)[/tex]

Combining everything, the simplified polynomial expression is:

[tex]\[
5x^4 - 37x^3 - 6x^2 + 41x - 6
\][/tex]

Thus, the correct answer is option:
A. [tex]\(5x^4 - 37x^3 - 6x^2 + 41x - 6\)[/tex]