Answer :
To simplify the expression
[tex]$$-4x^2(3x-7),$$[/tex]
follow these steps:
1. Distribute [tex]$-4x^2$[/tex]:
Multiply [tex]$-4x^2$[/tex] by each term inside the parentheses:
[tex]$$-4x^2 \cdot 3x = -12x^3,$$[/tex]
[tex]$$-4x^2 \cdot (-7) = 28x^2.$$[/tex]
2. Combine the results:
The expression becomes:
[tex]$$-12x^3 + 28x^2.$$[/tex]
3. Identify the correct option:
The simplified expression is
[tex]$$-12x^3 + 28x^2,$$[/tex]
which corresponds to option D.
Thus, the answer is option D.
[tex]$$-4x^2(3x-7),$$[/tex]
follow these steps:
1. Distribute [tex]$-4x^2$[/tex]:
Multiply [tex]$-4x^2$[/tex] by each term inside the parentheses:
[tex]$$-4x^2 \cdot 3x = -12x^3,$$[/tex]
[tex]$$-4x^2 \cdot (-7) = 28x^2.$$[/tex]
2. Combine the results:
The expression becomes:
[tex]$$-12x^3 + 28x^2.$$[/tex]
3. Identify the correct option:
The simplified expression is
[tex]$$-12x^3 + 28x^2,$$[/tex]
which corresponds to option D.
Thus, the answer is option D.