College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is shown below:

\[
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
\]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. -\frac{1}{2}
C. 0
D. \frac{1}{2}

Answer :

Sure! Let's solve the equation step by step.

We start with the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

First, distribute the [tex]\(\frac{1}{2}\)[/tex] on the left side:

[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

This simplifies to:

[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

Combine like terms on both sides:

On the left:

[tex]\[
\frac{1}{2}x + 4
\][/tex]

On the right:

[tex]\[
\frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]

Now the equation looks like this:

[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Next, subtract 4 from both sides:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

To solve for [tex]\(x\)[/tex], add [tex]\(\frac{1}{2}x\)[/tex] to both sides:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

Combine the terms:

[tex]\[
x = 0
\][/tex]

So the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].