Answer :
To simplify the expression
[tex]$$-4x^2(3x - 7),$$[/tex]
we use the distributive property to multiply [tex]$-4x^2$[/tex] by each term inside the parentheses.
1. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$
-4x^2 \cdot 3x = -12x^{2+1} = -12x^3.
$$[/tex]
2. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$
-4x^2 \cdot (-7) = 28x^2.
$$[/tex]
Now, combine the results:
[tex]$$
-12x^3 + 28x^2.
$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
This corresponds to option A.
[tex]$$-4x^2(3x - 7),$$[/tex]
we use the distributive property to multiply [tex]$-4x^2$[/tex] by each term inside the parentheses.
1. Multiply [tex]$-4x^2$[/tex] by [tex]$3x$[/tex]:
[tex]$$
-4x^2 \cdot 3x = -12x^{2+1} = -12x^3.
$$[/tex]
2. Multiply [tex]$-4x^2$[/tex] by [tex]$-7$[/tex]:
[tex]$$
-4x^2 \cdot (-7) = 28x^2.
$$[/tex]
Now, combine the results:
[tex]$$
-12x^3 + 28x^2.
$$[/tex]
Thus, the simplified expression is
[tex]$$-12x^3 + 28x^2.$$[/tex]
This corresponds to option A.