College

Select the correct answer.

Simplify the expression [tex]-4x^2(3x-7)[/tex].

A. [tex]-12x^3 + 28x^2[/tex]
B. [tex]-12x^3 - 28x^2[/tex]
C. [tex]-12x^3 + 28[/tex]
D. [tex]-12x^3 - 28[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x-7)\)[/tex], you need to distribute [tex]\(-4x^2\)[/tex] across each term inside the parentheses. Let's break it down step-by-step:

1. Distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses:

- First, distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]

- Next, distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]

2. Combine the terms:

After the distribution, you combine the terms you obtained:
[tex]\[
-12x^3 + 28x^2
\][/tex]

So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].

Therefore, the correct answer is A. [tex]\(-12x^3 + 28x^2\)[/tex].