Answer :
To simplify the expression [tex]\(-4x^2(3x-7)\)[/tex], you need to distribute [tex]\(-4x^2\)[/tex] across each term inside the parentheses. Let's break it down step-by-step:
1. Distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Next, distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the terms:
After the distribution, you combine the terms you obtained:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Therefore, the correct answer is A. [tex]\(-12x^3 + 28x^2\)[/tex].
1. Distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Next, distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the terms:
After the distribution, you combine the terms you obtained:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Therefore, the correct answer is A. [tex]\(-12x^3 + 28x^2\)[/tex].