High School

Select the correct answer.

Simplify the expression [tex]-4x^2(3x - 7)[/tex].

A. [tex]-12x^3 + 28[/tex]

B. [tex]-12x^3 - 28x^2[/tex]

C. [tex]-12x^3 - 28[/tex]

D. [tex]-12x^3 + 28x^2[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we need to distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses. Here are the steps:

1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:

[tex]\(-4x^2 \times 3x = -12x^3\)[/tex]

This is done by multiplying the coefficients [tex]\(-4\)[/tex] and [tex]\(3\)[/tex] to get [tex]\(-12\)[/tex], and then multiplying the variables [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] by adding their exponents ([tex]\(2 + 1 = 3\)[/tex]) to get [tex]\(x^3\)[/tex].

2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:

[tex]\(-4x^2 \times -7 = 28x^2\)[/tex]

Here, multiply the coefficients [tex]\(-4\)[/tex] and [tex]\(-7\)[/tex] to get [tex]\(28\)[/tex], and the [tex]\(x^2\)[/tex] stays as it is since there is no additional [tex]\(x\)[/tex] to multiply.

So, the expression [tex]\(-4x^2(3x - 7)\)[/tex] simplifies to:

[tex]\[ -12x^3 + 28x^2 \][/tex]

The correct answer is: D. [tex]\(-12x^3 + 28x^2\)[/tex]