Answer :
Let's simplify the expression [tex]\(-4x^2(3x-7)\)[/tex] step-by-step:
1. Distribute [tex]\(-4x^2\)[/tex] across the terms inside the parentheses:
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the results from the multiplication:
The expression becomes:
[tex]\[
-12x^3 + 28x^2
\][/tex]
Therefore, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Based on the options given, the correct answer is:
- A. [tex]\(-12 x^3 + 28 x^2\)[/tex].
1. Distribute [tex]\(-4x^2\)[/tex] across the terms inside the parentheses:
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times (-7) = 28x^2
\][/tex]
2. Combine the results from the multiplication:
The expression becomes:
[tex]\[
-12x^3 + 28x^2
\][/tex]
Therefore, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Based on the options given, the correct answer is:
- A. [tex]\(-12 x^3 + 28 x^2\)[/tex].