Answer :
Let's solve these numerical problems step-by-step:
Convert speed from km/hr to m/s:
- Given speed: 36 km/hr
- To convert km/hr to m/s, use the conversion factor: [tex]1 \text{ km/hr} = \frac{1}{3.6} \text{ m/s}[/tex].
- [tex]36 \times \frac{1}{3.6} = 10 \text{ m/s}[/tex].
Find the speed of the car:
- Distance traveled: 900 meters
- Time taken: 30 seconds
- Speed = [tex]\frac{\text{distance}}{\text{time}} = \frac{900}{30} = 30 \text{ m/s}[/tex].
Calculate the acceleration of the taxi:
- Initial velocity: 5 m/s
- Final velocity: 20 m/s
- Time taken: 15 seconds
- Acceleration = [tex]\frac{\text{change in velocity}}{\text{time}} = \frac{20 - 5}{15} = 1 \text{ m/s}^2[/tex].
Calculate distance traveled by the bus:
- Speed of the bus: 10 m/s
- Time: 20 seconds
- Distance = [tex]\text{speed} \times \text{time} = 10 \times 20 = 200 \text{ meters}[/tex].
Calculate the work done by a man throwing a stone:
- Mass of the stone: 3 kg
- Distance: 500 meters
- Since work done = weight [tex]\times[/tex] distance, and weight [tex]= \text{mass} \times \text{gravity} = 3 \times 10 = 30 \text{ N}[/tex],
- Work = [tex]30 \times 500 = 15000 \text{ J}[/tex] (assuming gravity [tex]g = 10 \text{ m/s}^2[/tex]).
Calculate power for moving a mass:
- Mass: 60 kg
- Distance: 300 meters
- Time: 1 minute (60 seconds)
- Power is [tex]\frac{\text{Work}}{\text{Time}}[/tex] and Work = Weight [tex]\times[/tex] distance
- Weight = [tex]60 \times 10 = 600 \text{ N}[/tex]
- Work = [tex]600 \times 300 = 180000 \text{ J}[/tex]
- Power = [tex]\frac{180000}{60} = 3000 \text{ Watts}[/tex].
Find power exerted by a man climbing a ladder:
- Total weight carried: 450 N + 150 N = 600 N
- Height: 3 meters
- Time: 10 seconds
- Power = [tex]\frac{\text{Work}}{\text{Time}}[/tex] where Work = Weight [tex]\times[/tex] height
- Work = [tex]600 \times 3 = 1800 \text{ J}[/tex]
- Power = [tex]\frac{1800}{10} = 180 \text{ Watts}[/tex].