Answer :
Sure! Let's simplify the given expression step-by-step:
We need to simplify the expression [tex]\(-4 x^2(3 x - 7)\)[/tex].
1. Distribute [tex]\(-4 x^2\)[/tex] to both terms inside the parentheses:
[tex]\[
-4 x^2 \cdot 3x + (-4 x^2) \cdot (-7)
\][/tex]
2. Multiply the constants and variables:
[tex]\[
-4 \cdot 3 \cdot x^2 \cdot x = -12 x^3
\][/tex]
[tex]\[
-4 \cdot (-7) \cdot x^2 = 28 x^2
\][/tex]
Putting them together, we get:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
So the simplified expression is:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
The correct answer is:
A. [tex]\(-12 x^3 + 28 x^2\)[/tex]
We need to simplify the expression [tex]\(-4 x^2(3 x - 7)\)[/tex].
1. Distribute [tex]\(-4 x^2\)[/tex] to both terms inside the parentheses:
[tex]\[
-4 x^2 \cdot 3x + (-4 x^2) \cdot (-7)
\][/tex]
2. Multiply the constants and variables:
[tex]\[
-4 \cdot 3 \cdot x^2 \cdot x = -12 x^3
\][/tex]
[tex]\[
-4 \cdot (-7) \cdot x^2 = 28 x^2
\][/tex]
Putting them together, we get:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
So the simplified expression is:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
The correct answer is:
A. [tex]\(-12 x^3 + 28 x^2\)[/tex]