Answer :
Sure, let's simplify the expression [tex]\( -4 x^2(3 x - 7) \)[/tex] step by step.
1. Distribute the [tex]\( -4 x^2 \)[/tex] across the terms inside the parentheses:
[tex]\[
-4 x^2 \cdot 3 x + (-4 x^2) \cdot (-7)
\][/tex]
2. Multiply the terms:
[tex]\[
-4 x^2 \cdot 3 x = -12 x^3
\][/tex]
[tex]\[
-4 x^2 \cdot -7 = 28 x^2
\][/tex]
3. Combine the results:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
Therefore, the simplified expression is:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
The correct answer is:
D. [tex]\(-12 x^3 + 28 x^2\)[/tex]
1. Distribute the [tex]\( -4 x^2 \)[/tex] across the terms inside the parentheses:
[tex]\[
-4 x^2 \cdot 3 x + (-4 x^2) \cdot (-7)
\][/tex]
2. Multiply the terms:
[tex]\[
-4 x^2 \cdot 3 x = -12 x^3
\][/tex]
[tex]\[
-4 x^2 \cdot -7 = 28 x^2
\][/tex]
3. Combine the results:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
Therefore, the simplified expression is:
[tex]\[
-12 x^3 + 28 x^2
\][/tex]
The correct answer is:
D. [tex]\(-12 x^3 + 28 x^2\)[/tex]