College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Simplify the expression [tex]-4x^2(3x-7)[/tex].

A. [tex]-12x^3-28[/tex]
B. [tex]-12x^3+28[/tex]
C. [tex]-12x^3-28x^2[/tex]
D. [tex]-12x^3+28x^2[/tex]

Answer :

To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we can use the distributive property. Here are the steps:

1. Distribute [tex]\(-4x^2\)[/tex] over both terms inside the parentheses [tex]\((3x - 7)\)[/tex].

[tex]\[ -4x^2 \cdot 3x \][/tex]
[tex]\[ -4x^2 \cdot (-7) \][/tex]

Let's handle these one by one.

2. Multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:

[tex]\[ -4x^2 \cdot 3x = (-4 \cdot 3) \cdot (x^2 \cdot x) = -12x^3 \][/tex]

3. Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:

[tex]\[ -4x^2 \cdot (-7) = -4 \cdot (-7) \cdot x^2 = 28x^2 \][/tex]

4. Combine the results:

[tex]\[ -4x^2(3x - 7) = -12x^3 + 28x^2 \][/tex]

So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].

The correct answer is:
[tex]\[ \boxed{D. -12x^3 + 28x^2} \][/tex]