Answer :
To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], you can use the distributive property. Here are the steps:
1. Distribute [tex]\(-4x^2\)[/tex] to both terms inside the parentheses:
[tex]\[
-4 x^2(3x) + (-4 x^2)(-7)
\][/tex]
2. Multiply [tex]\(-4x^2\)[/tex] by each term:
- For the first term:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- For the second term:
[tex]\[
-4x^2 \times -7 = 28x^2
\][/tex]
3. Combine the results:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is:
[tex]\[
-12x^3 + 28x^2
\][/tex]
The correct answer is:
D. [tex]\(-12x^3 + 28x^2\)[/tex]
1. Distribute [tex]\(-4x^2\)[/tex] to both terms inside the parentheses:
[tex]\[
-4 x^2(3x) + (-4 x^2)(-7)
\][/tex]
2. Multiply [tex]\(-4x^2\)[/tex] by each term:
- For the first term:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- For the second term:
[tex]\[
-4x^2 \times -7 = 28x^2
\][/tex]
3. Combine the results:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is:
[tex]\[
-12x^3 + 28x^2
\][/tex]
The correct answer is:
D. [tex]\(-12x^3 + 28x^2\)[/tex]